mboost - Model-Based Boosting
Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data. Models and algorithms are described in <doi:10.1214/07-STS242>, a hands-on tutorial is available from <doi:10.1007/s00180-012-0382-5>. The package allows user-specified loss functions and base-learners.
Last updated 4 months ago
boosting-algorithmsgamglmmachine-learningmboostmodellingr-languagetutorialsvariable-selectionopenblas
12.70 score 72 stars 27 dependents 540 scripts 4.5k downloadsgamboostLSS - Boosting Methods for 'GAMLSS'
Boosting models for fitting generalized additive models for location, shape and scale ('GAMLSS') to potentially high dimensional data.
Last updated 16 days ago
boosting-algorithmsgamboostlssgamlssmachine-learningr-languagevariable-selection
8.52 score 26 stars 1 dependents 163 scripts 1.1k downloadsFDboost - Boosting Functional Regression Models
Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm. For a manual on how to use 'FDboost', see Brockhaus, Ruegamer, Greven (2017) <doi:10.18637/jss.v094.i10>.
Last updated 3 months ago
boostingboosting-algorithmsfunction-on-function-regressionfunction-on-scalar-regressionmachine-learningscalar-on-function-regressionvariable-selection
8.00 score 17 stars 98 scripts 877 downloads