Package: gamboostLSS 2.1-0

Benjamin Hofner

gamboostLSS: Boosting Methods for 'GAMLSS'

Boosting models for fitting generalized additive models for location, shape and scale ('GAMLSS') to potentially high dimensional data.

Authors:Benjamin Hofner [aut, cre], Andreas Mayr [aut], Nora Fenske [aut], Janek Thomas [aut], Matthias Schmid [aut]

gamboostLSS_2.1-0.tar.gz
gamboostLSS_2.1-0.zip(r-4.5)gamboostLSS_2.1-0.zip(r-4.4)gamboostLSS_2.1-0.zip(r-4.3)
gamboostLSS_2.1-0.tgz(r-4.5-any)gamboostLSS_2.1-0.tgz(r-4.4-any)gamboostLSS_2.1-0.tgz(r-4.3-any)
gamboostLSS_2.1-0.tar.gz(r-4.5-noble)gamboostLSS_2.1-0.tar.gz(r-4.4-noble)
gamboostLSS_2.1-0.tgz(r-4.4-emscripten)gamboostLSS_2.1-0.tgz(r-4.3-emscripten)
gamboostLSS.pdf |gamboostLSS.html
gamboostLSS/json (API)
NEWS

# Install 'gamboostLSS' in R:
install.packages('gamboostLSS', repos = c('https://boost-r.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/boost-r/gamboostlss/issues

Datasets:
  • india - Malnutrition of Children in India
  • india.bnd - Malnutrition of Children in India

On CRAN:

Conda:

boosting-algorithmsgamboostlssgamlssmachine-learningr-languagevariable-selection

8.71 score 26 stars 1 packages 163 scripts 1.7k downloads 4 mentions 65 exports 13 dependencies

Last updated 30 days agofrom:9021dc3854. Checks:6 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-winNOTEMar 26 2025
R-4.5-macNOTEMar 26 2025
R-4.5-linuxNOTEMar 26 2025
R-4.4-winOKMar 26 2025
R-4.4-macOKMar 26 2025
R-4.4-linuxOKMar 26 2025
R-4.3-winOKMar 26 2025
R-4.3-macOKMar 26 2025

Exports:as.familiesBetaLSSBetaMuBetaPhiblackboostLSScvrisk.mboostLSScvrisk.nc_mboostLSSDirichletAlphaDirichletLSSFamiliesgamboostLSSgamboostLSS_interngamlss.Familiesgamlss1parMugamlss2parMugamlss2parSigmagamlss3parMugamlss3parNugamlss3parSigmagamlss4parMugamlss4parNugamlss4parSigmagamlss4parTauGammaLSSGammaMuGammaSigmaGaussianLSSGaussianMuGaussianSigmaglmboostLSSLogLogLSSLogLogMuLogLogSigmaLogNormalLSSLogNormalMuLogNormalSigmamake.gridmboostLSSmboostLSS_fitmodel.weightsNBinomialLSSNBinomialMuNBinomialSigmaPIplot.cvriskLSSplot.gamboostLSSplot.glmboostLSSplot.nc_cvriskLSSplot.predintpredict.mboostLSSpredintselectedselected.mboostLSSselected.stabsel_mboostLSSstabsel.mboostLSSStudentTDfStudentTLSSStudentTMuStudentTSigmaWeibullLSSWeibullMuWeibullSigmaweighted.medianZINBLSSZIPoLSS

Dependencies:FormulainumlatticelibcoinMatrixmboostmvtnormnnlspartykitquadprogrpartstabssurvival

gamboostLSS Tutorial

Rendered fromgamboostLSS_Tutorial.Rnwusingutils::Sweaveon Mar 26 2025.

Last update: 2017-04-28
Started: 2016-08-04

Readme and manuals

Help Manual

Help pageTopics
Boosting algorithms for GAMLSSgamboostLSS-package
Include 'gamlss' families in the boosting framework of 'gamboostLSS'as.families gamlss.Families gamlss1parMu gamlss2parMu gamlss2parSigma gamlss3parMu gamlss3parNu gamlss3parSigma gamlss4parMu gamlss4parNu gamlss4parSigma gamlss4parTau
Cross-Validationcvrisk cvrisk.mboostLSS cvrisk.nc_mboostLSS make.grid plot.cvriskLSS plot.nc_cvriskLSS
Families for GAMLSS modelsBetaLSS BetaMu BetaPhi DirichletAlpha DirichletLSS Families families GammaLSS GammaMu GammaSigma GaussianLSS GaussianMu GaussianSigma LogLogLSS LogLogMu LogLogSigma LogNormalLSS LogNormalMu LogNormalSigma NBinomialLSS NBinomialMu NBinomialSigma options stabilize_ngrad stabilize_ngradient stab_ngrad StudentTDf StudentTLSS StudentTMu StudentTSigma WeibullLSS WeibullMu WeibullSigma ZINBLSS ZIPoLSS
Malnutrition of Children in India (DHS, 1998-99)india india.bnd
Fitting GAMLSS by BoostingblackboostLSS gamboostLSS glmboostLSS mboostLSS mboostLSS_fit
Methods for mboostLSScoef.glmboostLSS coef.mboostLSS fitted.mboostLSS model.weights model.weights.default model.weights.mboostLSS mstop.cvriskLSS mstop.mboostLSS mstop.oobag PI plot.gamboostLSS plot.glmboostLSS plot.predint predict.mboostLSS predint print.mboostLSS risk risk.mboostLSS risk.nc_mboostLSS selected selected.mboostLSS summary.mboostLSS update.mboostLSS [.mboostLSS
Stability Selectionselected.stabsel_mboostLSS stabsel.mboostLSS
Weighted Medianweighted.median